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FPT algorithmic techniques

Significant advances in the past 20 years or so (especially in recent years).

Powerful toolbox for designing FPT algorithms:

Iterative compressionTreewidth

Bounded Search Tree

Graph Minors Theorem
Color coding

Kernelization
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Goals

Demonstrate techniques that were successfully used in the analysis of

parameterized problems.

There are two goals:

Determine quickly if a problem is FPT.

Design fast algorithms.

Warning: The results presented for particular problems are not necessarily

the best known results or the most useful approaches for these problems.

Conventions:

Unless noted otherwise, k is the parameter.

O∗ notation: O∗(f(k)) means O(f(k) · nc) for some constant c.

Citations are mostly omitted (only for classical results).

We gloss over the difference between decision and search problems.
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Kernelization
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Kernelization

Definition: Kernelization is a polynomial-time transformation that maps an

instance (I, k) to an instance (I ′, k′) such that

(I, k) is a yes-instance if and only if (I ′, k′) is a yes-instance,

k′ ≤ k, and

|I ′| ≤ f(k) for some function f(k).
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Kernelization

Definition: Kernelization is a polynomial-time transformation that maps an

instance (I, k) to an instance (I ′, k′) such that

(I, k) is a yes-instance if and only if (I ′, k′) is a yes-instance,

k′ ≤ k, and

|I ′| ≤ f(k) for some function f(k).

Simple fact: If a problem has a kernelization algorithm, then it is FPT.
Proof: Solve the instance (I ′, k′) by brute force.
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Kernelization

Definition: Kernelization is a polynomial-time transformation that maps an

instance (I, k) to an instance (I ′, k′) such that

(I, k) is a yes-instance if and only if (I ′, k′) is a yes-instance,

k′ ≤ k, and

|I ′| ≤ f(k) for some function f(k).

Simple fact: If a problem has a kernelization algorithm, then it is FPT.
Proof: Solve the instance (I ′, k′) by brute force.

Converse: Every FPT problem has a kernelization algorithm.

Proof: Suppose there is an f(k)nc algorithm for the problem.

If f(k) ≤ n, then solve the instance in time f(k)nc ≤ nc+1, and output a
trivial yes- or no-instance.

If n < f(k), then we are done: a kernel of size f(k) is obtained.
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Kernelization for VERTEX COVER

General strategy: We devise a list of reduction rules, and show that if none of

the rules can be applied and the size of the instance is still larger than f(k),
then the answer is trivial.

Reduction rules for VERTEX COVER instance (G, k):

Rule 1: If v is an isolated vertex ⇒ (G \ v, k)

Rule 2: If d(v) > k ⇒ (G \ v, k − 1)

If neither Rule 1 nor Rule 2 can be applied:

If |V (G)| > k(k + 1) ⇒ There is no solution (every vertex should be the
neighbor of at least one vertex of the cover).

Otherwise, |V (G)| ≤ k(k + 1) and we have a k(k + 1) vertex kernel.
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Kernelization for VERTEX COVER

Let us add a third rule:

Rule 1: If v is an isolated vertex ⇒ (G \ v, k)

Rule 2: If d(v) > k ⇒ (G \ v, k − 1)

Rule 3: If d(v) = 1, then we can assume that its neighbor u is in the

solution ⇒ (G \ (u ∪ v), k − 1).

If none of the rules can be applied, then every vertex has degree at least 2.
⇒ |V (G)| ≤ |E(G)|

If |E(G)| > k2 ⇒ There is no solution (each vertex of the solution can

cover at most k edges).

Otherwise, |V (G)| ≤ |E(G)| ≤ k2 and we have a k2 vertex kernel.
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COVERING POINTS WITH L INES

Task: Given a set P of n points in the plane and an integer k, find k lines that

cover all the points.

Note: We can assume that every line of the solution covers at least 2 points,

thus there are at most n2 candidate lines.
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COVERING POINTS WITH L INES

Task: Given a set P of n points in the plane and an integer k, find k lines that

cover all the points.

Note: We can assume that every line of the solution covers at least 2 points,

thus there are at most n2 candidate lines.

Reduction Rule:
If a candidate line covers a set S of more than k points ⇒ (P \ S, k − 1).

If this rule cannot be applied and there are still more than k2 points, then there

is no solution ⇒ Kernel with at most k2 points.
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Kernelization

Kernelization can be thought of as a polynomial-time preprocessing before

attacking the problem with whatever method we have. “It does no harm” to
try kernelization.

Some kernelizations use lots of simple reduction rules and require a

complicated analysis to bound the kernel size. . .

. . . while other kernelizations are based on surprising nice tricks (Next:
Crown Reduction and the Sunflower Lemma).

Possibility to prove lower bounds (S. Saurabh’s lecture).
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Crown Reduction
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Crown Reduction

Definition: A crown decomposition is a partition C ∪ H ∪ B of the vertices

such that

C is an independent set,

there is no edge between C and B,

there is a matching between C and H

that covers H . B

C

H
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Crown Reduction

Definition: A crown decomposition is a partition C ∪ H ∪ B of the vertices

such that

C is an independent set,

there is no edge between C and B,

there is a matching between C and H

that covers H .

C

B

H

Crown rule for V ERTEX COVER:
The matching needs to be covered and we can assume that it is covered by H

(makes no sense to use vertices of C)

⇒ (G \ (H ∪ C), k − |H |).
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Crown Reduction

Definition: A crown decomposition is a partition C ∪ H ∪ B of the vertices

such that

C is an independent set,

there is no edge between C and B,

there is a matching between C and H

that covers H . B

C

H

Crown rule for V ERTEX COVER:
The matching needs to be covered and we can assume that it is covered by H

(makes no sense to use vertices of C)

⇒ (G \ (H ∪ C), k − |H |).
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Crown Reduction

Key lemma:

Lemma: Given a graph G without isolated vertices and an integer k, in

polynomial time we can either

find a matching of size k + 1,

find a crown decomposition,

or conclude that the graph has at most 3k vertices.
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Crown Reduction

Key lemma:

Lemma: Given a graph G without isolated vertices and an integer k, in

polynomial time we can either

find a matching of size k + 1, ⇒ No solution!

find a crown decomposition, ⇒ Reduce!

or conclude that the graph has at most 3k vertices.
⇒ 3k vertex kernel!

This gives a 3k vertex kernel for VERTEX COVER.
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Proof

Lemma: Given a graph G without isolated vertices and an integer k, in

polynomial time we can either

find a matching of size k + 1,

find a crown decomposition,

or conclude that the graph has at most 3k vertices.

For the proof, we need the classical Kőnig’s Theorem.

τ (G) : size of the minimum vertex cover
ν(G) : size of the maximum matching (independent set of edges)

Theorem: [Kőnig, 1931] If G is bipartite, then

τ (G) = ν(G)
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Proof

Lemma: Given a graph G without isolated vertices and an integer k, in

polynomial time we can either

find a matching of size k + 1,

find a crown decomposition,

or conclude that the graph has at most 3k vertices.

Proof: Find (greedily) a maximal matching; if its

size is at least k + 1, then we are done. The rest
of the graph is an independent set I .

IX
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Proof

Lemma: Given a graph G without isolated vertices and an integer k, in

polynomial time we can either

find a matching of size k + 1,

find a crown decomposition,

or conclude that the graph has at most 3k vertices.

Proof: Find (greedily) a maximal matching; if its

size is at least k + 1, then we are done. The rest
of the graph is an independent set I .

Find a maximum matching/minimum vertex cover
in the bipartite graph between X and I .

I

X
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Proof

Lemma: Given a graph G without isolated vertices and an integer k, in

polynomial time we can either

find a matching of size k + 1,

find a crown decomposition,

or conclude that the graph has at most 3k vertices.

Proof:
Case 1: The minimum vertex cover contains at
least one vertex of X

⇒ There is a crown decomposition.

C

HX

I
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Proof

Lemma: Given a graph G without isolated vertices and an integer k, in

polynomial time we can either

find a matching of size k + 1,

find a crown decomposition,

or conclude that the graph has at most 3k vertices.

Proof:
Case 1: The minimum vertex cover contains at
least one vertex of X

⇒ There is a crown decomposition.

Case 2: The minimum vertex cover contains only

vertices of I ⇒ It contains every vertex of I

⇒ There are at most 2k + k vertices.

I

X
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DUAL OF VERTEX COLORING

Parameteric dual of k-COLORING. Also known as SAVING k COLORS.

Task: Given a graph G and an integer k, find a vertex coloring with
|V (G)| − k colors.

Crown rule for D UAL OF VERTEX COLORING:
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DUAL OF VERTEX COLORING

Parameteric dual of k-COLORING. Also known as SAVING k COLORS.

Task: Given a graph G and an integer k, find a vertex coloring with
|V (G)| − k colors.

Crown rule for D UAL OF VERTEX COLORING:

Suppose there is a crown decomposition for the complement graph G.

C is a clique in G: each vertex needs a

distinct color.

Because of the matching, H can be colored

using only these |C| colors.

These colors cannot be used for B.

(G \ (H ∪ C), k − |H |)

B

C

H
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DUAL OF VERTEX COLORING

Parameteric dual of k-COLORING. Also known as SAVING k COLORS.

Task: Given a graph G and an integer k, find a vertex coloring with
|V (G)| − k colors.

Crown rule for D UAL OF VERTEX COLORING:

Suppose there is a crown decomposition for the complement graph G.

C is a clique in G: each vertex needs a

distinct color.

Because of the matching, H can be colored

using only these |C| colors.

These colors cannot be used for B.

(G \ (H ∪ C), k − |H |)

B

C

H

FPT algorithmic techniques – p.15/97



Crown Reduction for DUAL OF VERTEX
COLORING

Use the key lemma for the complement G of G:

Lemma: Given a graph G without isolated vertices and an integer k, in
polynomial time we can either

find a matching of size k + 1, ⇒ YES: we can save k colors!

find a crown decomposition, ⇒ Reduce!

or conclude that the graph has at most 3k vertices.

⇒ 3k vertex kernel!

This gives a 3k vertex kernel for DUAL OF VERTEX COLORING.
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Sunflower Lemma
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Sunflower lemma

Definition: Sets S1, S2, . . . , Sk form a sunflower if the sets

Si \ (S1 ∩ S2 ∩ · · · ∩ Sk) are disjoint.

petals
center

Lemma: [Erdős and Rado, 1960] If the size of a set system is greater than

(p − 1)d · d! and it contains only sets of size at most d, then the system
contains a sunflower with p petals. Furthermore, in this case such a sunflower

can be found in polynomial time.
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Sunflowers and d-HITTING SET

d-HITTING SET: Given a collection S of sets of size at most d and an integer

k, find a set S of k elements that intersects every set of S .

petals
center

Reduction Rule: If k + 1 sets form a sunflower, then remove these sets from
S and add the center C to S (S does not hit one of the petals, thus it has to hit

the center).

If the rule cannot be applied, then there are at most O(kd) sets.
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Sunflowers and d-HITTING SET

d-HITTING SET: Given a collection S of sets of size at most d and an integer

k, find a set S of k elements that intersects every set of S .

petals
center

Reduction Rule (variant): Suppose more than k + 1 sets form a sunflower.

If the sets are disjoint ⇒ No solution.

Otherwise, keep only k + 1 of the sets.

If the rule cannot be applied, then there are at most O(kd) sets.
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Graph Minors

Neil Robertson Paul Seymour
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Graph Minors

Some consequences of the Graph Minors Theorem give a quick way of

showing that certain problems are FPT.

However, the function f(k) in the resulting FPT algorithms can be HUGE,

completely impractical.

History: motivation for FPT.

Parts and ingredients of the theory are useful for algorithm design.

New algorithmic results are still being developed.
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Graph Minors

Definition: Graph H is a minor G (H ≤ G) if H can be obtained from G by

deleting edges, deleting vertices, and contracting edges.

deleting uv

w

u

u

v

v

contracting uv

Example: A triangle is a minor of a graph G if and only if G has a cycle (i.e., it

is not a forest).
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Graph minors

Equivalent definition: Graph H is a minor of G if there is a mapping φ that

maps each vertex of H to a connected subset of G such that

φ(u) and φ(v) are disjoint if u 6= v, and

if uv ∈ E(G), then there is an edge between φ(u) and φ(v).

2

76

5431

77

46 5

7

6

321 4 5

6

7 5
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Minor closed properties

Definition: A set G of graphs is minor closed if whenever G ∈ G and

H ≤ G, then H ∈ G as well.

Examples of minor closed properties:
planar graphs
acyclic graphs (forests)

graphs having no cycle longer than k

empty graphs

Examples of not minor closed properties:
complete graphs
regular graphs

bipartite graphs
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Forbidden minors

Let G be a minor closed set and let F be the set of “minimal bad graphs”:

H ∈ F if H 6∈ G, but every proper minor of H is in G.

Characterization by forbidden minors:

G ∈ G ⇐⇒ ∀H ∈ F , H 6≤ G

The set F is the obstruction set of property G.
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Forbidden minors

Let G be a minor closed set and let F be the set of “minimal bad graphs”:

H ∈ F if H 6∈ G, but every proper minor of H is in G.

Characterization by forbidden minors:

G ∈ G ⇐⇒ ∀H ∈ F , H 6≤ G

The set F is the obstruction set of property G.

Theorem: [Wagner] A graph is planar if and only if it does not have a K5 or
K3,3 minor.

In other words: the obstruction set of planarity is F = {K5, K3,3}.

Does every minor closed property have such a finite characterization?
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Graph Minors Theorem

Theorem: [Robertson and Seymour] Every minor closed property G has a

finite obstruction set.

Note: The proof is contained in the paper series “Graph Minors I–XX”.

Note: The size of the obstruction set can be astronomical even for simple
properties.
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Graph Minors Theorem

Theorem: [Robertson and Seymour] Every minor closed property G has a

finite obstruction set.

Note: The proof is contained in the paper series “Graph Minors I–XX”.

Note: The size of the obstruction set can be astronomical even for simple
properties.

Theorem: [Robertson and Seymour] For every fixed graph H , there is an

O(n3) time algorithm for testing whether H is a minor of the given graph G.

Corollary: For every minor closed property G, there is an O(n3) time
algorithm for testing whether a given graph G is in G.
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Applications

PLANAR FACE COVER: Given a graph G and an integer k, find an embedding

of planar graph G such that there are k faces that cover all the vertices.

One line argument:

For every fixed k, the class Gk of graphs of yes-instances is minor closed.

⇓

For every fixed k, there is a O(n3) time algorithm for PLANAR FACE COVER.

Note: non-uniform FPT.
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Applications

k-LEAF SPANNING TREE: Given a graph G and an integer k, find a spanning

tree with at least k leaves.

Technical modification: Is there such a spanning tree for at least one
component of G?

One line argument:

For every fixed k, the class Gk of no-instances is minor closed.

⇓

For every fixed k, k-LEAF SPANNING TREE can be solved in time O(n3).
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G + k vertices

Let G be a graph property, and let G + kv contain graph G if there is a set

S ⊆ V (G) of k vertices such that G \ S ∈ G.

S

Lemma: If G is minor closed, then G + kv is minor closed for every fixed k.
⇒ Finding the smallest k such that a given graph is in G + kv is FPT.
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G + k vertices

Let G be a graph property, and let G + kv contain graph G if there is a set

S ⊆ V (G) of k vertices such that G \ S ∈ G.

S

Lemma: If G is minor closed, then G + kv is minor closed for every fixed k.
⇒ Finding the smallest k such that a given graph is in G + kv is FPT.

If G = forests ⇒ G + kv = graphs that can be made acyclic by the
deletion of k vertices ⇒ FEEDBACK VERTEX SET is FPT.

If G = planar graphs ⇒ G + kv = graphs that can be made planar by the

deletion of k vertices (k-apex graphs) ⇒ k-APEX GRAPH is FPT.

If G = empty graphs ⇒ G + kv = graphs with vertex cover number at
most k ⇒ VERTEX COVER is FPT.
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Two types of problems

We have to solve some problems.

We have to find something nice hidden somewhere.
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Two types of problems

We have to solve some problems.

Typically minimization problems: VERTEX COVER,
HITTING SET, DOMINATING SET, covering/stabbing

problems, graph modification problems, . . .

Bounded search trees, iterative compression

We have to find something nice hidden somewhere.

Typically maximization problems: k-PATH, DISJOINT

TRIANGLES, k-LEAF SPANNING TREE, . . .

Color coding, matroids
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Forbidden subgraphs
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Forbidden subgraphs

General problem class: Given a graph G and an integer k, transform G with

at most k modifications (add/remove vertices/edges) into a graph having
property P .

Example:
TRIANGLE DELETION: make the graph triangle-free by deleting at most k

vertices.

Branching algorithm:

If the graph is triangle-free, then we are done.

If there is a triangle v1v2v3, then at least one of v1, v2, v3 has to be

deleted ⇒ We branch into 3 directions.
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TRIANGLE DELETION

Search tree:

height ≤ k + 1

v2

T

v1 v3

The search tree has at most 3k leaves and the work to be done is polynomial

at each step ⇒ O∗(3k) time algorithm.

Note: If the answer is “NO”, then the search tree has exactly 3k leaves.
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Hereditary properties

Definition: A graph property P is hereditary if for every G ∈ P and induced

subgraph G′ of G, we have G′ ∈ P as well.

Examples: triangle-free, bipartite, interval graph, planar

Observation: Every hereditary property P can be characterized by a (finite or

infinite) set F of forbidden induced subgraphs:

G ∈ P ⇔ ∀H ∈ F , H 6⊆ind G
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Hereditary properties

Definition: A graph property P is hereditary if for every G ∈ P and induced

subgraph G′ of G, we have G′ ∈ P as well.

Examples: triangle-free, bipartite, interval graph, planar

Observation: Every hereditary property P can be characterized by a (finite or

infinite) set F of forbidden induced subgraphs:

G ∈ P ⇔ ∀H ∈ F , H 6⊆ind G

Theorem: If P is hereditary and can be characterized by a finite set F of for-

bidden induced subgraphs, then the graph modification problems corresponding

to P are FPT.
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Hereditary properties

Theorem: If P is hereditary and can be characterized by a finite set F of

forbidden induced subgraphs, then the graph modification problems
corresponding to P are FPT.

Proof:

Suppose that every graph in F has at most r vertices. Using brute force,

we can find in time O(nr) a forbidden subgraph (if exists).

If a forbidden subgraph exists, then we have to delete one of the at most r

vertices or add/delete one of the at most
(

r
2

)

edges ⇒ Branching factor is

a constant c depending on F .

The search tree has at most ck leaves and the work to be done at each
node is O(nr).
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CLUSTER EDITING

Task: Given a graph G and an integer k, add/remove at most k edges such

that every component is a clique in the resulting graph.
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CLUSTER EDITING

Task: Given a graph G and an integer k, add/remove at most k edges such

that every component is a clique in the resulting graph.

Property P : every component is a clique.

Forbidden induced subgraph:

O∗(3k) time algorithm.
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CHORDAL COMPLETION

Definition: A graph is chordal if it does not contain an induced cycle of length

greater than 3.

CHORDAL COMPLETION: Given a graph G and an integer k, add at most k

edges to G to make it a chordal graph.
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CHORDAL COMPLETION

Definition: A graph is chordal if it does not contain an induced cycle of length

greater than 3.

CHORDAL COMPLETION: Given a graph G and an integer k, add at most k

edges to G to make it a chordal graph.

The forbidden induced subgraphs are the cycles of length greater 3

⇒ Not a finite set!
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CHORDAL COMPLETION

Definition: A graph is chordal if it does not contain an induced cycle of length

greater than 3.

CHORDAL COMPLETION: Given a graph G and an integer k, add at most k

edges to G to make it a chordal graph.

The forbidden induced subgraphs are the cycles of length greater 3

⇒ Not a finite set!

Lemma: At least k − 3 edges are needed to make a k-cycle chordal.

Proof: By induction. k = 3 is trivial.

Ck
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CHORDAL COMPLETION

Definition: A graph is chordal if it does not contain an induced cycle of length

greater than 3.

CHORDAL COMPLETION: Given a graph G and an integer k, add at most k

edges to G to make it a chordal graph.

The forbidden induced subgraphs are the cycles of length greater 3

⇒ Not a finite set!

Lemma: At least k − 3 edges are needed to make a k-cycle chordal.

Proof: By induction. k = 3 is trivial.

Ck

Ck−x+2

Cx
Cx : x − 3 edges

Ck−x+2: k − x − 1 edges
Ck : (x−3)+(k−x−1)+1 =

k − 3 edges
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CHORDAL COMPLETION

Algorithm:

Find an induced cycle C of length at least 4 (can be done in polynomial

time).

If no such cycle exists ⇒ Done!

If C has more than k + 3 vertices ⇒ No solution!

Otherwise, one of the
(

|C|

2

)

− |C| ≤ (k + 3)(k + 2)/2 − k = O(k2)

missing edges has to be added ⇒ Branch!

Size of the search tree is kO(k).
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CHORDAL COMPLETION – more efficiently

Definition: Triangulation of a cycle.

Ck

Lemma: Every chordal supergraph of a cycle C contains a triangulation of the
cycle C .

Lemma: The number of ways a cycle of length k can be triangulated is exactly

the (k − 2)th Catalan number

Ck−2 =
1

k − 1

(

2(k − 2)

k − 2

)

≤ 4k−3.
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CHORDAL COMPLETION – more efficiently

Algorithm:

Find an induced cycle C of length at least 4 (can be done in polynomial

time).

If no such cycle exists ⇒ Done!

If C has more than k + 3 vertices ⇒ No solution!

Otherwise, one of the ≤ 4|C |−3 triangulations has to be in the solution ⇒

Branch!

Claim: Search tree has at most Tk = 4k leaves.

Proof: By induction. Number of leaves is at most

Tk ≤ 4|C |−3 · Tk−(|C |−3) ≤ 4|C |−3 · 4k−(|C |−3) = 4k .
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Iterative compression

FPT algorithmic techniques – p.41/97



Iterative compression

A surprising small, but very powerful trick.

Most useful for deletion problems: delete k things to achieve some
property.

Demonstration: ODD CYCLE TRANSVERSAL aka BIPARTITE DELETION aka

GRAPH BIPARTIZATION: Given a graph G and an integer k, delete k

vertices to make the graph bipartite.

Forbidden induced subgraphs: odd cycles. There is no bound on the size

of odd cycles.
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B IPARTITE DELETION

Solution based on iterative compression:

Step 1:
Solve the annotated problem for bipartite graphs:

Given a bipartite graph G, two sets B, W ⊆ V (G), and an integer

k, find a set S of at most k vertices such that G \ S has a 2-coloring
where B \ S is black and W \ S is white.
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B IPARTITE DELETION

Solution based on iterative compression:

Step 1:
Solve the annotated problem for bipartite graphs:

Given a bipartite graph G, two sets B, W ⊆ V (G), and an integer

k, find a set S of at most k vertices such that G \ S has a 2-coloring
where B \ S is black and W \ S is white.

Step 2:
Solve the compression problem for general graphs:

Given a graph G, an integer k, and a set S′ of k + 1 vertices such
that G \ S′ is bipartite, find a set S of k vertices such that G \ S is

bipartite.
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B IPARTITE DELETION

Solution based on iterative compression:

Step 1:
Solve the annotated problem for bipartite graphs:

Given a bipartite graph G, two sets B, W ⊆ V (G), and an integer

k, find a set S of at most k vertices such that G \ S has a 2-coloring
where B \ S is black and W \ S is white.

Step 2:
Solve the compression problem for general graphs:

Given a graph G, an integer k, and a set S′ of k + 1 vertices such
that G \ S′ is bipartite, find a set S of k vertices such that G \ S is

bipartite.

Step 3:
Apply the magic of iterative compression. . .
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Step 1: The annotated problem

Given a bipartite graph G, two sets B, W ⊆ V (G), and an integer k, find a

set S of at most k vertices such that G \ S has a 2-coloring where B \ S is
black and W \ S is white.

B

W
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Step 1: The annotated problem

Given a bipartite graph G, two sets B, W ⊆ V (G), and an integer k, find a

set S of at most k vertices such that G \ S has a 2-coloring where B \ S is
black and W \ S is white.

W0

B

W

B0

Find an arbitrary 2-coloring (B0, W0) of G.
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Step 1: The annotated problem

Given a bipartite graph G, two sets B, W ⊆ V (G), and an integer k, find a

set S of at most k vertices such that G \ S has a 2-coloring where B \ S is
black and W \ S is white.

W

W0

B

B0

C

C

Find an arbitrary 2-coloring (B0, W0) of G.
C := (B0 ∩ W ) ∪ (W0 ∩ B) should change color, while

R := (B0 ∩ B) ∪ (W0 ∩ W ) should remain the same color.
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Step 1: The annotated problem

Given a bipartite graph G, two sets B, W ⊆ V (G), and an integer k, find a

set S of at most k vertices such that G \ S has a 2-coloring where B \ S is
black and W \ S is white.

W

B0 W0

B

C

CR

R

Find an arbitrary 2-coloring (B0, W0) of G.
C := (B0 ∩ W ) ∪ (W0 ∩ B) should change color, while

R := (B0 ∩ B) ∪ (W0 ∩ W ) should remain the same color.

Lemma: G \ S has the required 2-coloring if and only if S separates C and
R, i.e., no component of G \ S contains vertices from both C \ S and R \ S.
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Step 1: The annotated problem

Lemma: G \ S has the required 2-coloring if and only if S separates C and

R, i.e., no component of G \ S contains vertices from both C \ S and R \ S.

Proof:
⇒ In a 2-coloring of G \ S, each vertex either remained the same color or

changed color. Adjacent vertices do the same, thus every component either
changed or remained.

⇐ Flip the coloring of those components of G \ S that contain vertices from
C \ S. No vertex of R is flipped.

Algorithm: Using max-flow min-cut techniques, we can check if there is a set

S that separates C and R. It can be done in time O(k|E(G)|) using k

iterations of the Ford-Fulkerson algorithm.
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Step 2: The compression problem

Given a graph G, an integer k, and a set S′ of k + 1 vertices such that G \ S′

is bipartite, find a set S of k vertices such that G \ S is bipartite.

S′
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Step 2: The compression problem

Given a graph G, an integer k, and a set S′ of k + 1 vertices such that G \ S′

is bipartite, find a set S of k vertices such that G \ S is bipartite.

deleted

S′

black white

Branch into 3k+1 cases: each vertex of S′ is either black, white, or deleted.
Trivial check: no edge between two black or two white vertices.
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Step 2: The compression problem

Given a graph G, an integer k, and a set S′ of k + 1 vertices such that G \ S′

is bipartite, find a set S of k vertices such that G \ S is bipartite.

W

S′

black white deleted

Branch into 3k+1 cases: each vertex of S′ is either black, white, or deleted.
Trivial check: no edge between two black or two white vertices.

Neighbors of the black vertices in S′ should be white and the neighbors of the
white vertices in S′ should be black.
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Step 2: The compression problem

Given a graph G, an integer k, and a set S′ of k + 1 vertices such that G \ S′

is bipartite, find a set S of k vertices such that G \ S is bipartite.

BW

S′

black white deleted

Branch into 3k+1 cases: each vertex of S′ is either black, white, or deleted.
Trivial check: no edge between two black or two white vertices.

Neighbors of the black vertices in S′ should be white and the neighbors of the
white vertices in S′ should be black.
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Step 2: The compression problem

Given a graph G, an integer k, and a set S′ of k + 1 vertices such that G \ S′

is bipartite, find a set S of k vertices such that G \ S is bipartite.

W B

The vertices of S′ can be disregarded. Thus we need to solve the annotated
problem on the bipartite graph G \ S′.

Running time: O(3k · k|E(G)|) time.
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Step 3: Iterative compression

How do we get a solution of size k + 1?
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Step 3: Iterative compression

How do we get a solution of size k + 1?

We get it for free!
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Step 3: Iterative compression

How do we get a solution of size k + 1?

We get it for free!
Let V (G) = {v1, . . . , vn} and let Gi be the graph induced by {v1, . . . , vi}.

For every i, we find a set Si of size k such that Gi \ Si is bipartite.

For Gk , the set Sk = {v1, . . . , vk} is a trivial solution.

If Si−1 is known, then Si−1 ∪ {vi} is a set of size k + 1 whose deletion
makes Gi bipartite ⇒ We can use the compression algorithm to find a

suitable Si in time O(3k · k|E(Gi)|).
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Step 3: Iterative Compression

Bipartite-Deletion(G, k)

1. Sk = {v1, . . . , vk}

2. for i := k + 1 to n

3. Invariant: Gi−1 \ Si−1 is bipartite.

4. Call Compression(Gi, Si−1 ∪ {vi})

5. If the answer is “NO” ⇒ return “NO”

6. If the answer is a set X ⇒ Si := X

7. Return the set Sn

Running time: the compression algorithm is called n times and everything

else can be done in linear time

⇒ O(3k · k|V (G)| · |E(G)|) time algorithm.
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Color coding
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Color coding

Works best when we need to ensure that a small number of “things” are

disjoint.

We demonstrate it on two problems:

Find an s-t path of length exactly k.

Find k vertex-disjoint triangles in a graph.

Randomized algorithm, but can be derandomized using a standard

technique.

Very robust technique, we can use it as an “opening step” when
investigating a new problem.
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k-PATH

Task: Given a graph G, an integer k, two vertices s, t, find a simple s-t path

with exactly k internal vertices.

Note: Finding such a walk can be done easily in polynomial time.

Note: The problem is clearly NP-hard, as it contains the s-t HAMILTONIAN

PATH problem.

The k-PATH algorithm can be used to check if there is a cycle of length exactly
k in the graph.
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k-PATH

Assign colors from [k] to vertices V (G) \ {s, t} uniformly and

independently at random.

s t
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k-PATH

Assign colors from [k] to vertices V (G) \ {s, t} uniformly and

independently at random.

ts
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k-PATH

Assign colors from [k] to vertices V (G) \ {s, t} uniformly and

independently at random.

ts

Check if there is a colorful s-t path: a path where each color appears

exactly once on the internal vertices; output “YES” or “NO”.

FPT algorithmic techniques – p.52/97



k-PATH

Assign colors from [k] to vertices V (G) \ {s, t} uniformly and

independently at random.

ts

Check if there is a colorful s-t path: a path where each color appears

exactly once on the internal vertices; output “YES” or “NO”.

If there is no s-t k-path: no such colorful path exists ⇒ “NO”.

If there is an s-t k-path: the probability that such a path is colorful is

k!

kk
>

(k
e
)k

kk
= e−k ,

thus the algorithm outputs “YES” with at least that probability.
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Error probability

If there is a k-path, the probability that the algorithm does not say “YES”

after ek repetitions is at most

(1 − e−k)ek

<
(

e−e−k
)ek

= 1/e ≈ 0.38

Repeating the whole algorithm a constant number of times can make the

error probability an arbitrary small constant.

For example, by trying 100 · ek random colorings, the probability of a
wrong answer is at most 1/e100.
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Error probability

If there is a k-path, the probability that the algorithm does not say “YES”

after ek repetitions is at most

(1 − e−k)ek

<
(

e−e−k
)ek

= 1/e ≈ 0.38

Repeating the whole algorithm a constant number of times can make the

error probability an arbitrary small constant.

For example, by trying 100 · ek random colorings, the probability of a
wrong answer is at most 1/e100.

It remains to see how a colorful s-t path can be found.

Method 1: Trying all permutations.

Method 2: Dynamic programming.
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Method 1: Trying all permutations

The colors encountered on a colorful s-t path form a permutation π of

{1, 2, . . . , k}:

s t

π(k). . .π(2)π(1)

We try all possible k! permutations. For a fixed π, it is easy to check if there is

a path with this order of colors.
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Method 1: Trying all permutations

We try all possible k! permutations. For a fixed π, it is easy to check if there is

a path with this order of colors.

s

π(k). . .π(2)π(1)

t

Edges connecting nonadjacent color classes are removed.

The remaining edges are directed.

All we need to check if there is a directed s-t path.

Running time is O(k! · |E(G)|).
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Method 1: Trying all permutations

We try all possible k! permutations. For a fixed π, it is easy to check if there is

a path with this order of colors.

π(k)π(1) π(2) . . .

s t

Edges connecting nonadjacent color classes are removed.

The remaining edges are directed.

All we need to check if there is a directed s-t path.

Running time is O(k! · |E(G)|).
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Method 1: Trying all permutations

We try all possible k! permutations. For a fixed π, it is easy to check if there is

a path with this order of colors.

s t

π(1) π(2) . . . π(k)

Edges connecting nonadjacent color classes are removed.

The remaining edges are directed.

All we need to check if there is a directed s-t path.

Running time is O(k! · |E(G)|).
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Method 2: Dynamic Programming

We introduce 2k · |V (G)| Boolean variables:

x(v, C) = TRUE for some v ∈ V (G) and C ⊆ [k]

m

There is an s-v path where each color in C appears exactly

once and no other color appears.
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Method 2: Dynamic Programming

We introduce 2k · |V (G)| Boolean variables:

x(v, C) = TRUE for some v ∈ V (G) and C ⊆ [k]

m

There is an s-v path where each color in C appears exactly

once and no other color appears.

Clearly, x(s, ∅) = TRUE. Recurrence for vertex v with color r:

x(v, C) =
∨

uv∈E(G)

x(u, C \ {r})
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Method 2: Dynamic Programming

We introduce 2k · |V (G)| Boolean variables:

x(v, C) = TRUE for some v ∈ V (G) and C ⊆ [k]

m

There is an s-v path where each color in C appears exactly

once and no other color appears.

Clearly, x(s, ∅) = TRUE. Recurrence for vertex v with color r:

x(v, C) =
∨

uv∈E(G)

x(u, C \ {r})

If we know every x(v, C) with |C| = i, then we can determine every x(v, C)

with |C| = i + 1 ⇒ All the values can be determined in time O(2k · |E(G)|).

There is a colorful s-t path ⇔ x(v, [k]) = TRUE for some neighbor of t.
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Derandomization

Using Method 2, we obtain a O∗((2e)k) time algorithm with constant error
probability. How to make it deterministic?

Definition: A family H of functions [n] → [k] is a k-perfect family of hash
functions if for every S ⊆ [n] with |S| = k, there is a h ∈ H such that

h(x) 6= h(y) for any x, y ∈ S, x 6= y.
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Derandomization

Using Method 2, we obtain a O∗((2e)k) time algorithm with constant error
probability. How to make it deterministic?

Definition: A family H of functions [n] → [k] is a k-perfect family of hash
functions if for every S ⊆ [n] with |S| = k, there is a h ∈ H such that

h(x) 6= h(y) for any x, y ∈ S, x 6= y.

Instead of trying O(ek) random colorings, we go through a k-perfect family H

of functions V (G) → [k]. If there is a solution ⇒ The internal vertices S are

colorful for at least one h ∈ H ⇒ Algorithm outputs “YES”.
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Derandomization

Using Method 2, we obtain a O∗((2e)k) time algorithm with constant error
probability. How to make it deterministic?

Definition: A family H of functions [n] → [k] is a k-perfect family of hash
functions if for every S ⊆ [n] with |S| = k, there is a h ∈ H such that

h(x) 6= h(y) for any x, y ∈ S, x 6= y.

Instead of trying O(ek) random colorings, we go through a k-perfect family H

of functions V (G) → [k]. If there is a solution ⇒ The internal vertices S are

colorful for at least one h ∈ H ⇒ Algorithm outputs “YES”.

Theorem: There is a k-perfect family of functions [n] → [k] having size
2O(k) log n.

⇒ There is a deterministic 2O(k) · nO(1) time algorithm for the k-PATH prob-

lem.
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k-DISJOINT TRIANGLES

Task: Given a graph G and an integer k, find k vertex disjoint triangles.

Step 1: Choose a random coloring V (G) → [3k].
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k-DISJOINT TRIANGLES

Task: Given a graph G and an integer k, find k vertex disjoint triangles.

Step 1: Choose a random coloring V (G) → [3k].

Step 2: Check if there is a colorful solution, where the 3k vertices of the k

triangles use distinct colors.

Method 1: Try every permutation π of [3k] and check if there are triangles

with colors (π(1), π(2), π(3)), (π(4), π(5), π(6)), . . .

Method 2: Dynamic programming. For C ⊆ [3k] and |C| = 3i, let
x(C) = TRUE if and only if there are |C|/3 disjoint triangles using exactly

the colors in C .

x(C) =
∨

{c1,c2,c3}⊆C

(x(C \ {c1, c2, c3}) ∧ ∃△ with colors c1, c2, c3)
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k-DISJOINT TRIANGLES

Step 3: Colorful solution exists with probability at least e−3k , which is a lower

bound on the probability of a correct answer.

Running time: constant error probability after e3k repetitions ⇒ running time
is O∗((2e)3k) (using Method 2).

Derandomization: 3k-perfect family of functions instead of random coloring.
Running time is 2O(k) · nO(1).
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Color coding

We have seen that color coding can be used to find paths, cycles of length k,

or a set of k disjoint triangles.

What other structures can be found efficiently with this technique?

The key is treewidth:

Theorem: Given two graph H, G, it can be decided if H is a subgraph of G in

time 2O(|V (H)|) · |V (G)|O(w), where w is the treewidth of G.

Thus if H belongs to a class of graphs with bounded treewidth, then the

subgraph problem is FPT.
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Matroid Theory
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Matroid Theory

Matroids: a classical subject of combinatorial optimization.

Matroids lurk behind matching, flow, spanning tree, and some linear

algebra problems.

A general FPT result that can be used to show that some concrete

problems are FPT.
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Matroids

Definition: A set system M over E is a matroid if

(1) ∅ ∈ M.

(2) If X ∈ M and Y ⊆ X , then Y ∈ M.

(3) If X, Y ∈ M and |X | > |Y |, then ∃e ∈ X \ Y such that Y ∪ {e} ∈ M.

Example: M = {∅, 1, 2, 3, 12, 13} is a matroid.

Example: M = {∅, 1, 2, 12, 3} is not a matroid.

If X ∈ M, then we say that X is independent in matroid M.
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Transversal matroid

Fact: Let G(A, B; E) be a bipartite graph. Those subsets of A that can be

covered by a matching form a matroid.
a1

b5b4b3b2b1

a5a4a3a2

(1) The empty set can be clearly covered.

(2) If X can be covered, then every subset Y ⊆ X can be covered.
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Transversal matroid

Fact: Let G(A, B; E) be a bipartite graph. Those subsets of A that can be

covered by a matching form a matroid.
a1

b5b4b3b2b1

a5a4a3a2

(1) The empty set can be clearly covered.

(2) If X can be covered, then every subset Y ⊆ X can be covered.

FPT algorithmic techniques – p.64/97



Transversal matroid

Fact: Let G(A, B; E) be a bipartite graph. Those subsets of A that can be

covered by a matching form a matroid.
a1

b5b4b3b2b1

a5a4a3a2

(1) The empty set can be clearly covered.

(2) If X can be covered, then every subset Y ⊆ X can be covered.

(3) Suppose |X | > |Y | and they are covered by matchings MX and MY ,

respectively. There is a component of MX ∪ MY containing more red edges

than blue edges. We can augment MY along this path.
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Transversal matroid

Fact: Let G(A, B; E) be a bipartite graph. Those subsets of A that can be

covered by a matching form a matroid.

b3

a1

b4 b5

a2 a3 a4 a5

b1 b2

(1) The empty set can be clearly covered.

(2) If X can be covered, then every subset Y ⊆ X can be covered.

(3) Suppose |X | > |Y | and they are covered by matchings MX and MY ,

respectively. There is a component of MX ∪ MY containing more red edges

than blue edges. We can augment MY along this path.
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Transversal matroid

Fact: Let G(A, B; E) be a bipartite graph. Those subsets of A that can be

covered by a matching form a matroid.

b3

a1

b4 b5

a2 a3 a4 a5

b1 b2

(1) The empty set can be clearly covered.

(2) If X can be covered, then every subset Y ⊆ X can be covered.

(3) Suppose |X | > |Y | and they are covered by matchings MX and MY ,

respectively. There is a component of MX ∪ MY containing more red edges

than blue edges. We can augment MY along this path.
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Linear matroids

Fact: Let A be matrix and let E be the set of column vectors in A. The

subsets E′ ⊆ E that are linearly independent form a matroid.

Proof:
(1) and (2) are clear.

(3) If |X | > |Y | and both of them are linearly independent, then X spans a
subspace with larger dimension than Y . Thus X contains a vector v not

spanned by Y ⇒ Y ∪ {v} is linearly independent.

Example:

a b c d




1 0 2 3

0 1 4 6





⇒ M = {∅, a, b, c, d, ab, ac, ad, bc, bd}
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Representation

If M is the matroid of the columns of a matrix A, then A is a

representation of M.

If A is a matrix over a field F, then M is representable over F.

If M is representable over some field F, then M is linear.

There are non-linear matroids (i.e., they cannot be represented over any

field).
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Transversal matroids are linear

Fact: Let G(A, B; E) be a bipartite graph. Those subsets of A that can be

covered by a matching form a linear matroid.

a1

b5b4b3b2b1

a5a4a3a2
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Transversal matroids are linear

Fact: Let G(A, B; E) be a bipartite graph. Those subsets of A that can be

covered by a matching form a linear matroid.

a1

b5b4b3b2b1

a5a4a3a2
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Transversal matroids are linear

Fact: Let G(A, B; E) be a bipartite graph. Those subsets of A that can be

covered by a matching form a linear matroid.

a1

b5b4b3b2b1

a5a4a3a2
a1 a2 a3 a4 a5

b1

b2

b3

b4

b5























? 0 0 0 0

? ? 0 0 0

0 ? 0 ? 0

? 0 ? ? ?

0 0 0 ? ?























Construct the bipartite adjacency matrix: if ai and bj are neighbors, then the

i-th element of row j is a random integer between 1 and N .
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Transversal matroids are linear

Fact: Let G(A, B; E) be a bipartite graph. Those subsets of A that can be

covered by a matching form a linear matroid.

a1

b5b4b3b2b1

a5a4a3a2
a1 a2 a3 a4 a5

b1

b2

b3

b4

b5























? 0 0 0 0

? ? 0 0 0

0 ? 0 ? 0

? 0 ? ? ?

0 0 0 ? ?























Construct the bipartite adjacency matrix: if ai and bj are neighbors, then the

i-th element of row j is a random integer between 1 and N .

A set of columns are independent ⇒ there is a nonzero subdeterminant ⇒

the elements can be matched.
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Transversal matroids are linear

Fact: Let G(A, B; E) be a bipartite graph. Those subsets of A that can be

covered by a matching form a linear matroid.

a1

b5b4b3b2b1

a5a4a3a2
a1 a2 a3 a4 a5

b1

b2

b3

b4

b5























? 0 0 0 0

? ? 0 0 0

0 ? 0 ? 0

? 0 ? ? ?

0 0 0 ? ?























Construct the bipartite adjacency matrix: if ai and bj are neighbors, then the

i-th element of row j is a random integer between 1 and N .

A set of columns are independent ⇒ there is a nonzero subdeterminant ⇒

the elements can be matched.
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Transversal matroids are linear

Fact: Let G(A, B; E) be a bipartite graph. Those subsets of A that can be

covered by a matching form a linear matroid.

a1

b5b4b3b2b1

a5a4a3a2
a1 a2 a3 a4 a5

b1

b2

b3

b4

b5























? 0 0 0 0

? ? 0 0 0

0 ? 0 ? 0

? 0 ? ? ?

0 0 0 ? ?























Construct the bipartite adjacency matrix: if ai and bj are neighbors, then the

i-th element of row j is a random integer between 1 and N .

A set of columns are independent ⇒ there is a nonzero subdeterminant ⇒

the elements can be matched.
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Transversal matroids are linear

Fact: Let G(A, B; E) be a bipartite graph. Those subsets of A that can be

covered by a matching form a linear matroid.

a1

b5b4b3b2b1

a5a4a3a2
a1 a2 a3 a4 a5

b1

b2

b3

b4

b5























? 0 0 0 0

? ? 0 0 0

0 ? 0 ? 0

? 0 ? ? ?

0 0 0 ? ?























Construct the bipartite adjacency matrix: if ai and bj are neighbors, then the

i-th element of row j is a random integer between 1 and N .

Elements can be matched ⇒ The determinant is nonzero with high probability

(Schwartz-Zippel)
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FPT result

Main result: Let M be a linear matroid over E, given by a representation A.

Let S be a collection of subsets of E, each of size at most ℓ. It can be decided
in randomized time f(k, ℓ) · nO(1) whether M has an independent set that is

the union of k disjoint sets from S .

Immediate application: k-DISJOINT TRIANGLES is (randomized) FPT (let S

be the set of all triangles in the graph).

Two not so obvious applications:

RELIABLE TERMINALS

ASSIGNMENT WITH COUPLES
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RELIABLE TERMINALS

Let D be a directed graph with a source vertex s and a subset T of vertices.

Task: Select k terminals t1, . . . , tk ∈ T , and ℓ paths from s to each ti such
that these k · ℓ paths are pairwise internally vertex disjoint.

s T
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Task: Select k terminals t1, . . . , tk ∈ T , and ℓ paths from s to each ti such
that these k · ℓ paths are pairwise internally vertex disjoint.

s T

k = 2, ℓ = 3
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RELIABLE TERMINALS

Let D be a directed graph with a source vertex s and a subset T of vertices.

Task: Select k terminals t1, . . . , tk ∈ T , and ℓ paths from s to each ti such
that these k · ℓ paths are pairwise internally vertex disjoint.

s T

k = 2, ℓ = 3

Theorem: The problem can be solved in randomized time f(k, ℓ) · nO(1).
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RELIABLE TERMINALS

A technical trick: replace each t ∈ T with ℓ copies, and replace s with a set S

of k · ℓ copies.

s T

k = 2, ℓ = 3
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RELIABLE TERMINALS

A technical trick: replace each t ∈ T with ℓ copies, and replace s with a set S

of k · ℓ copies.

S T

k = 2, ℓ = 3

Now if a terminal t is selected, then we should connect the ℓ copies of t with ℓ

different vertices of S.
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RELIABLE TERMINALS

A technical trick: replace each t ∈ T with ℓ copies, and replace s with a set S

of k · ℓ copies.

S T

k = 2, ℓ = 3

Now if a terminal t is selected, then we should connect the ℓ copies of t with ℓ

different vertices of S.

Fact: [Perfect] Let D be a directed graph and S a subset of vertices. Those

subsets X that can be reached from S by disjoint paths form a matroid.
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RELIABLE TERMINALS

Fact: [Perfect] Let D be a directed graph and S a subset of vertices. Those

subsets X that can be reached from S by disjoint paths form a matroid.

The problem is equivalent to finding k blocks whose union is independent in

this matroid ⇒ We can solve it in randomized time f(k, ℓ) · nO(1).

The matroid is actually a transversal matroid of an appropriately defined bipar-

tite graph, hence it is linear and we can construct a representation for it.
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ASSIGNMENT WITH COUPLES

Task: Assign people to jobs (bipartite matching).

However, the set of people includes couples and the members of a couple
cannot be assigned independently (say, they want to be in the same town).

Task: Given

a set of singles and a list of suitable jobs for each single,

a set of couples and a list of suitable pairs of jobs for each couple,

assign a job to each single and a pair of jobs to each couple.

Theorem: ASSIGNMENT WITH COUPLES is randomized FPT parameterized by
the number k of couples.
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ASSIGNMENT WITH COUPLES

J : jobs, S: singles, C : couples

Let X ⊆ J be in M if and only if S has a matching with J \ X .

Lemma: M is matroid.

Let M′ be the matroid over J ∪ C such that X ∈ M′ ⇔ X ∩ J ∈ M.
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ASSIGNMENT WITH COUPLES

J : jobs, S: singles, C : couples

Let X ⊆ J be in M if and only if S has a matching with J \ X .

Lemma: M is matroid.

Let M′ be the matroid over J ∪ C such that X ∈ M′ ⇔ X ∩ J ∈ M.

J

C

For each couple c ∈ C and suitable pair {j1, j2}, add triple {c, j1, j2} to S .

The k couples and all the singles can be a assigned a job

m

There are k disjoint triples in S whose union is independent in M′
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Let X ⊆ J be in M if and only if S has a matching with J \ X .

Lemma: M is matroid.

Let M′ be the matroid over J ∪ C such that X ∈ M′ ⇔ X ∩ J ∈ M.
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Cut problems
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MULTIWAY CUT

Task: Given a graph G, a set T of vertices, and an integer k, find a set S of at

most k edges that separates T (each component of G \ S contains at most
one vertex of T ).

Polynomial for |T | = 2, but NP-hard for |T | = 3.

Theorem: MULTIWAY CUT is FPT parameterized by k.

S

YX

δ(R): set of edges leaving R

λ(X, Y ): minimum number of edges in an (X, Y )-separator
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Submodularity

Fact: The function δ is submodular: for arbitrary sets A, B,

|δ(A)| + |δ(B)| ≥ |δ(A ∩ B)| + |δ(A ∪ B)|
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Submodularity

Fact: The function δ is submodular: for arbitrary sets A, B,

|δ(A)| + |δ(B)| ≥ |δ(A ∩ B)| + |δ(A ∪ B)|

Proof: Determine separately the contribution of the different types of edges.

A B
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Submodularity

Fact: The function δ is submodular: for arbitrary sets A, B,

|δ(A)| + |δ(B)| ≥ |δ(A ∩ B)| + |δ(A ∪ B)|

0 1 1 0

Proof: Determine separately the contribution of the different types of edges.

BA
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Proof: Determine separately the contribution of the different types of edges.

A B
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Submodularity

Consequence: There is a unique maximal Rmax ⊇ X such that δ(Rmax) is an

(X, Y )-separator of size λ(X, Y ).

Proof: Let R1, R2 ⊇ X be two sets such that δ(R1), δ(R2) are
(X, Y )-separators of size λ := λ(X, Y ).

R2R1

Y

X

|δ(R1)| + |δ(R2)| ≥ |δ(R1 ∩ R2)| + |δ(R1 ∪ R2)|

λ λ ≥ λ

⇒ |δ(R1 ∪ R2)| ≤ λ

Note: Analogous result holds for a unique minimal Rmin.
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MULTIWAY CUT

Intuition: Consider a t ∈ T . A subset of the solution separates t and T \ {t}.

t
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MULTIWAY CUT

Intuition: Consider a t ∈ T . A subset of the solution separates t and T \ {t}.

t

There are many such separators.
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There are many such separators.
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MULTIWAY CUT

Intuition: Consider a t ∈ T . A subset of the solution separates t and T \ {t}.

t

There are many such separators.

But a separator farther from t and closer to T \ {t} seems to be more useful.
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Important separators

Definition: An (X, Y )-separator δ(R) (R ⊇ X) is important if there is no

(X, Y )-separator δ(R′) with R ⊂ R′ and |δ(R′)| ≤ |δ(R)|.

YX
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Important separators

Definition: An (X, Y )-separator δ(R) (R ⊇ X) is important if there is no

(X, Y )-separator δ(R′) with R ⊂ R′ and |δ(R′)| ≤ |δ(R)|.

X Y
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Important separators

Lemma: Let t ∈ T . The MULTIWAY CUT problem has a solution S such that S

contains an important (t, T \ {t})-separator.
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Important separators

Lemma: Let t ∈ T . The MULTIWAY CUT problem has a solution S such that S

contains an important (t, T \ {t})-separator.

Proof: Let R be the vertices reachable from t in G \ S.

R

t
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Important separators

Lemma: Let t ∈ T . The MULTIWAY CUT problem has a solution S such that S

contains an important (t, T \ {t})-separator.

Proof: Let R be the vertices reachable from t in G \ S.

R′

R

t

If δ(R) is not important, then there is an important separator δ(R′) that
dominates it. Replace S with S′ := (S \ δ(R)) ∪ δ(R′) (|S′| ≤ |S|).
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Important separators

Lemma: Let t ∈ T . The MULTIWAY CUT problem has a solution S such that S

contains an important (t, T \ {t})-separator.

Proof: Let R be the vertices reachable from t in G \ S.

v

u

R′

R

t

If δ(R) is not important, then there is an important separator δ(R′) that
dominates it. Replace S with S′ := (S \ δ(R)) ∪ δ(R′) (|S′| ≤ |S|).

A u-v path in G \ S′ implies a u-t path, a contradiction.
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Important separators

Lemma: Let t ∈ T . The MULTIWAY CUT problem has a solution S such that S

contains an important (t, T \ {t})-separator.

Proof: Let R be the vertices reachable from t in G \ S.

t

R
v

u

R′

If δ(R) is not important, then there is an important separator δ(R′) that
dominates it. Replace S with S′ := (S \ δ(R)) ∪ δ(R′) (|S′| ≤ |S|).

A u-v path in G \ S′ implies a u-t path, a contradiction.
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Important separators

Lemma: There are at most 4k important (X, Y )-separators of size at most k.

Example:

X

Y

k/21 2

There are exactly 2k/2 important (X, Y )-separators of size at most k in this

graph.
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Important separators

Lemma: There are at most 4k important (X, Y )-separators of size at most k.

Proof: First we show that Rmax ⊆ R for every important separator δ(R).

|δ(Rmax)| + |δ(R)| ≥ |δ(Rmax ∩ R)| + |δ(Rmax ∪ R)|

λ ≥ λ

⇓

|δ(Rmax ∪ R)| ≤ |δ(R)|

⇓

If R 6= Rmax ∪ R, then δ(R) is not important.

Thus the important (X, Y )- and (Rmax, Y )-separators are the same.
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Important separators

Lemma: There are at most 4k important (X, Y )-separators of size at most k.

X Y

Rmax

vu

The edge uv leaving Rmax is either in the separator or not.

Branch 1: Edge uv is in the separator. Delete uv and set k := k − 1.
⇒ k decreases by one, λ decreases by at most 1.

Branch 2: Edge uv is not in the separator. Set X := Rmax ∪ {v}.
⇒ k remains the same, λ increases by 1.

The measure 2k − λ decreases in each step.

⇒ Height of the search tree ≤ 2k ⇒ ≤ 22k important separators.
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Algorithm for MULTIWAY CUT

1. If every vertex of T is in a different component, then we are done.

2. Let t ∈ T be a vertex with that is not separated from every T \ {t}.

3. Branch on a choice of an important ({t}, T \ {t}) separator S of size at
most k.

4. Set G := G \ S and k := k − |S|.

5. Go to step 1.

Size of the search tree:

When searching for the important separator, 2k − λ decreases at each
branching.

When choosing the next t, λ changes from 0 to positive, thus 2k − λ does

not increase.

Size of the search tree is at most 22k .
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Other separation problems

Some other variants:

|T | as a parameter

MULTITERMINAL CUT: pairs (s1, t1), . . . , (sℓ, tℓ) have to be separated.

Directed graphs

Planar graphs

Useful for deletion-type problems such as DIRECTED FEEDBACK VERTEX

SET (via iterative compression).

Important separators: is it relevant for a given problem?
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Integer Linear Programming
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Integer Linear Programming

Linear Programming (LP): important tool in (continuous) combinatorial

optimization. Sometimes very useful for discrete problems as well.

max c1x1 + c2x2 + c3x3

s.t.

x1 + 5x2 − x3 ≤ 8

2x1 − x3 ≤ 0

3x2 + 10x3 ≤ 10

x1, x2, x3 ∈ R

Fact: It can be decided if there is a solution (feasibility) and an optimum solution

can be found in polynomial time.
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Integer Linear Programming

Integer Linear Programming (ILP): Same as LP, but we require that every xi

is integer.

Very powerful, able to model many NP-hard problems. (Of course, no

polynomial-time algorithm is known.)

Theorem: ILP with p variables can be solved in time pO(p) · nO(1).
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CLOSEST STRING

Task: Given strings s1, . . . , sk of length L over alphabet Σ, and an integer d,

find a string s (of length L) such that d(s, si) ≤ d for every 1 ≤ i ≤ k.

Note: d(s, si) is the Hamming distance.

Theorem: CLOSEST STRING parameterized by k is FPT.

Theorem: CLOSEST STRING parameterized by d is FPT.
Theorem: CLOSEST STRING parameterized by L is FPT.

Theorem: CLOSEST STRING is NP-hard for Σ = {0, 1}.
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CLOSEST STRING

Task: Given strings s1, . . . , sk of length L over alphabet Σ, and an integer d,

find a string s (of length L) such that d(s, si) ≤ d for every 1 ≤ i ≤ k.

Note: d(s, si) is the Hamming distance.

Theorem: CLOSEST STRING parameterized by k is FPT.

Theorem: CLOSEST STRING parameterized by d is FPT.
Theorem: CLOSEST STRING parameterized by L is FPT.

Theorem: CLOSEST STRING is NP-hard for Σ = {0, 1}.
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CLOSEST STRING

An instance with k = 5 and a solution for d = 4:

s1 CBDCCACBB

s2 ABDBCABDB

s3 CDDBACCBD

s4 DDABACCBD

s5 ACDBDDCBC

ADDBCACBD

Each column can be described by a partition P of [k].

The instance can be described by an integer cP for each partition P : the num-

ber of columns with this type.

FPT algorithmic techniques – p.90/97



CLOSEST STRING

An instance with k = 5 and a solution for d = 4:

s1 CBDCCACBB

s2 ABDBCABDB

s3 CDDBACCBD

s4 DDABACCBD

s5 ACDBDDCBC

ADDBCACBD

Each column can be described by a partition P of [k].

The instance can be described by an integer cP for each partition P : the num-

ber of columns with this type.

FPT algorithmic techniques – p.90/97



CLOSEST STRING

An instance with k = 5 and a solution for d = 4:

s1 CBDCCACBB

s2 ABDBCABDB

s3 CDDBACCBD

s4 DDABACCBD

s5 ACDBDDCBC

ADDBCACBD

Each column can be described by a partition P of [k].

The instance can be described by an integer cP for each partition P : the num-

ber of columns with this type.

FPT algorithmic techniques – p.90/97



CLOSEST STRING

An instance with k = 5 and a solution for d = 4:

s1 CBDCCACBB

s2 ABDBCABDB

s3 CDDBACCBD

s4 DDABACCBD

s5 ACDBDDCBC

ADDBCACBD

Each column can be described by a partition P of [k].

The instance can be described by an integer cP for each partition P : the num-

ber of columns with this type.

FPT algorithmic techniques – p.90/97



CLOSEST STRING

An instance with k = 5 and a solution for d = 4:

s1 CBDCCACBB

s2 ABDBCABDB

s3 CDDBACCBD

s4 DDABACCBD

s5 ACDBDDCBC

ADDBCACBD

Each column can be described by a partition P of [k].

The instance can be described by an integer cP for each partition P : the num-

ber of columns with this type.

FPT algorithmic techniques – p.90/97



CLOSEST STRING

An instance with k = 5 and a solution for d = 4:
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CLOSEST STRING

Each column can be described by a partition P of [k].

The instance can be described by an integer cP for each partition P : the
number of columns with this type.

Describing a solution: If C is a class of P , let xP ,C be the number of type P

columns where the solution agrees with class C .

There is a solution iff the following ILP has a feasible solution:
∑

C∈P

xP ,C ≤ cP ∀partition P

∑

i 6∈C,C∈P

xP ,C ≤ d ∀1 ≤ i ≤ k

xP ,C ≥ 0 ∀P , C

Number of variables is ≤ B(k) · k, where B(k) is the no. of partitions of [k]

⇒ The ILP algorithm solves the problem in time f(k) · nO(1).
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STEINER TREE
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STEINER TREE

Task: Given a graph G with weighted edges and a set S of k vertices, find a

tree T of minimum weight that contains S.

Known to be NP-hard. For fixed k, we can solve it in polynomial time: we can

guess the Steiner points and the way they are connected.

Theorem: STEINER TREE is FPT parameterized by k = |S|.
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STEINER TREE

Solution by dynamic programming. For v ∈ V (G) and X ⊆ S,

c(v, X) := minimum cost of a Steiner tree of X that contains v

d(u, v) := distance of u and v

Recurrence relation:

c(v, X) = min
u∈V (G)

∅⊂X ′⊂X

c(u, X ′ \ u) + c(u, (X \ X ′) \ u) + d(u, v)
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STEINER TREE

Recurrence relation:

c(v, X) = min
u∈V (G)

∅⊂X ′⊂X

c(u, X ′ \ u) + c(u, (X \ X ′) \ u) + d(u, v)

≤: A tree T1 realizing c(u, X ′ \ u), a
tree T2 realizing c(u, (X \ X ′) \ u), and

the path uv gives a (superset of a) Steiner
tree of X containing v.

v

T2

T1

u
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STEINER TREE

Recurrence relation:

c(v, X) = min
u∈V (G)

∅⊂X ′⊂X

c(u, X ′ \ u) + c(u, (X \ X ′) \ u) + d(u, v)

≥: Suppose T realizes c(v, X), let T ′ be

the minimum subtree containing X . Let u

be a vertex of T ′ closest to v. If |X | > 1,

then there is a component C of T \ u that
contains a subset ∅ ⊂ X ′ ⊂ X of termi-

nals. Thus T is the disjoint union of a tree
containing X ′ \ u and u, a tree containing

(X \ X ′) \ u and u, and the path uv.
v

T1

T2u
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STEINER TREE

Recurrence relation:

c(v, X) = min
u∈V (G)

∅⊂X ′⊂X

c(u, X ′ \ u) + c(u, (X \ u) \ X ′) + d(u, v)

Running time:

2k |V (G)| variables c(v, X), determine them in increasing order of |X |.
Variable c(v, X) can be determined by considering 2|X | cases. Total number

of cases to consider:

∑

X⊆T

2|X | =

k
∑

i=1

(

k

i

)

2i ≤ (1 + 2)k = 3k .

Running time is O∗(3k).

Note: Running time can be reduced to O∗(2k) with clever techniques.
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Conclusions

Many nice techniques invented so far — and probably many more to come.

A single technique might provide the key for several problems.

How to find new techniques? By attacking the open problems!

Needed: flexible, highly expressive problems. Solve other problems by
reduction to these problems.

Courcelle’s Theorem

The matroid result

2SAT DELETION: given a 2SAT formula and an integer k, delete k

clauses to make it satisfiable

Constraint Satisfaction Problems
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